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Abstract

Steady, one-dimensional, diffusion in binary ideal gas mixtures is analyzed for both a zero mass average velocity and

a zero molar average velocity, to give solutions for equimass and equimolar counterdiffusion. It is shown that the

prescription of constant pressure results in equimass counterdiffusion rather than the commonly assumed equimolar

counterdiffusion, and that these two situations are fundamentally different. Application to the analysis of venting

processes is discussed.
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Most texts introduce steady, one-dimensional, diffu-

sion by considering two large chambers connected by a

tube, as shown in Fig. 1a, or by considering a venting

problem, as shown in Fig. 1b. In both cases the tem-

perature and total pressure are specified to be constant,

and diffusion through the connecting tube is analyzed

assuming equimolar counterdiffusion of species 1 and 2.

The purpose of this communication is to show that

the results of such analysis are incorrect, to provide the

correct solution, and to illuminate the true nature of the

practical venting problem.

We will start by considering two cases of steady one-

dimensional diffusion in an isothermal, inert, binary gas

mixture.

Case 1. On a mass basis the governing species and mass

conservation equations reduce to

n1 ¼ m1qvþ j1 ¼ const: ð1Þ

n ¼ qv ¼ const: ð2Þ

A solution of these equations is

v ¼ 0; j1 ¼ const:ð¼ �j2Þ; P ¼ const: ð3Þ

Notice that a zero mass average velocity requires a

constant total pressure according to Newton�s second
law of motion. Introducing Fick�s law,

�qD12

dm1

dz
¼ const: ð4Þ

and assuming an ideal gas mixture,

q ¼ PM
RT

; where
1

M
¼ m1

M1

þ m2

M2

ð5Þ

PM1M2D12

RT ðm1ðM2 �M1Þ þM1Þ
dm1

dz
¼ const: ð6Þ

For convenience we will take as boundary conditions

z ¼ 0; m1 ¼ 1; z ¼ L; m1 ¼ 0 ð7Þ

The resulting mass fraction distribution is then

m1 ¼
M2ðM1=M2Þz=L �M1

M2 �M1

ð8Þ

and the diffusion flux is

j1 ¼ �j2 ¼
PD12

RTL
M1M2

ðM2 �M1Þ
ln

M1

M2

� �
ð9Þ

Since v ¼ 0, there is no convective flux, and j1 ¼ n1,

j2 ¼ n2.
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Case 2. On a molar basis the governing species and

mole conservation equations are

N1 ¼ x1cv� þ J �
1 ¼ const: ð10Þ

N ¼ cv� ¼ const: ð11Þ

A solution of these equations is

v� ¼ 0; J �
1 ¼ �cD12

dx1
dz

¼ �J �
2 ¼ const: ð12Þ

We cannot deduce from this result that the pressure

and molar concentration are necessarily constant

(they are not constant). However, if we assume P , and
hence c, are constant, then from Eq. (12)

dx1
dz

¼ const: ð13Þ

Again for convenience we take as boundary condi-

tions

z ¼ 0; x1 ¼ 1; z ¼ L; x1 ¼ 0 ð14Þ

Then x1 ¼ z=L.

And

J �
1 ¼ cD12

L
¼ �J �

2 ð15Þ

Since v� ¼ 0 there is no molar convective flux and

J �
1 ¼ N1, J �

2 ¼ N2.

We are now in a position to discuss the diffusion

problems shown in Fig. 1a and b. Standard texts e.g. [1–

8] specify at the outset that the pressure in the two

chambers or streams are equal and that the pressure

remains constant everywhere. Then P ¼ const: in the

connecting tube and the Case 1 analysis applies. Clearly

we have an equimass counterdiffusion problem, and the

Case 1 analysis is exact in the context of the problem

specification. However, as is well known, the above

referenced texts all claim that the diffusion is equimolar

and hence that the Case 2 analysis is appropriate. To

show that the Case 2 analysis is inappropriate, we ex-

amine the implications of equimolar counterdiffusion.

Although the molar average velocity v� is zero, the mass

average velocity v is not zero, for

qv ¼ M1N1 þM2N2 ¼ J �
1 ðM1 �M2Þ ð16Þ

v ¼ J �
1

ðM1 �M2Þ
q

ð17Þ

If M1 < M2 (imagine species 1 to be helium and species 2

air, then q ¼ qHe at z ¼ 0, and q ¼ qair at z ¼ L); corre-
spondingly v is in the negative z-direction and increases

in the direction of flow. Even in a truly one-dimensional

problem where the dimensions in the x- and y-directions
are imagined to be infinite, there is a pressure gradient

required to accelerate the flow. But more importantly, in

a connecting tube, there will be pressure gradient re-

quired to overcome viscous forces associated with the

velocity profile, say vðrÞ in a circular tube. Thus clearly

the assumption of equimolar counterdiffusion is incon-

sistent with the specified constant pressure. The situation

in a connecting tube is further complicated by the fact

Nomenclature

c molar concentration, kmol/m3

D12 binary diffusion coefficient, m2/s

D tube diameter, m

J � molar diffusion flux relative to v�, kmol/m2 s

J mass diffusion flux relative to v, kg/m2 s

L tube length, m

M molecular weight, kg/kmol

m mass fraction

N absolute molar flux, kmol/m2 s

n absolute mass flux, kg/m2 s

P pressure, Pa

R gas constant, J/kmolK

r radial coordinate, m

T absolute temperature, K

V bulk velocity, m/s

v mass average velocity, m/s

v� molar average velocity, m/s

x mole fraction, spatial coordinate, m

y spatial coordinate, m

z spatial coordinate, m

l dynamic viscosity, kg/m s

q density, kg/m3

s characteristic diffusion time, s

Fig. 1. Configurations used for illustrating equimolar counter-

diffusion.

2496 A.F. Mills / International Journal of Heat and Mass Transfer 46 (2003) 2495–2497



that equimolar counterdiffusion cannot be one-dimen-

sional, for, at the walls of the tube, the mass average

velocity v ! 0, and the diffusion there is equimass, not

equimolar: thus, Eqs. (10) and (11) do not apply, and

two-dimensional governing equations are required.

Of course, it is tempting to suggest that, since the

pressure gradient associated with equimolar counter-

diffusion is very small, Eqs. (14) and (15) are at least

approximately correct, and that these simple results are

preferable to the more complicated exact results, Eqs. (8)

and (9). Unfortunately, this is not true, which is best

demonstrated by a numerical example.

Again consider helium as species 1, air as species 2;

P ¼ 1 atm ¼ 1:0133� 105 Pa, T ¼ 300 K, L ¼ 1 m,

D12 ¼ 0:713� 10�4 m2=s [9]. Then Eq. (9) gives n1 ¼
2:66� 10�5 kg=m2 s ¼ �n2 as the exact solution. The

corresponding exact solution for the absolute molar

fluxes is

N1 ¼
n1

M1

¼ 2:66� 10�5=4 ¼ 6:66� 10�6 kmol=m2 s

N2 ¼
n2

M2

¼ �2:66� 10�5=29

¼ �0:918� 10�6 kmol=m2 s

Also, cv� ¼ N1 þ N2 ¼ 5:74� 10�6 kmol/m2 s.

This is certainly not equimolar counterdiffusion and

v� is not zero. On the other hand, the result obtained

assuming equimolar counterdiffusion, Eq. (15), gives

N1 ¼ 2:896� 10�6 kmol=m2 s ¼ �N2

The error is very large! The source of the discrepancy is

now clear. The exact solution for P ¼ const: requires

that there be a convective molar flux of 5:74� 10�6

kmol/m2 s, which is actually about twice the diffusion

fluxes obtained assuming equimolar counterdiffusion:

thus the equimolar diffusion assumption is not even

approximately true.

When issues such as these are raised, we often suggest

that an appropriate experiment be performed. Let us

examine the key issue for such an experiment, namely,

how accurately we need to measure the pressure differ-

ential between the two chambers. At the very least we

should be able to measure the pressure differential re-

quired to have equimolar counterdiffusion with an error

of less than, say, 20%. The mass velocity is

n ¼ M1N1 þM2N2 ¼ J �
1 ðM1 �M2Þ ¼ 2:896� 10�6ð4–29Þ

¼ �7:24� 10�5 kg=m2 s

Ignoring entrance and two-dimensional effects, the

pressure gradient for Poiseuille flow can be used,

dP
dz

¼ 32lV
D2

¼ 32n
D2

l
q

ð18Þ

Let us calculate ðdP=dzÞ at each end of a 5 mm inside

diameter tube. At z ¼ 0 there is pure helium and

q ¼ 0:1624 kg/m3, l ¼ 20:1� 10�6 kg/m s, while at z ¼ L
there is pure air with q ¼ 1:177 kg/m3, l ¼ 18:43� 10�6

kg/m s (at 1 atm, 300 K) [9]. The resulting pressure

gradients are

dP
dz

����
0

¼ 1:15� 10�2 Pa=m;
dP
dz

����
L

¼ 1:45� 10�3 Pa=m

The acceleration pressure drop can be calculated to be

many orders of magnitude smaller and is ignored. For

an approximate estimate we can use the average of the

above two gradients, so that for a 1 m long tube,

DP 	 6:5� 10�3 Pa

(a more accurate result can be obtained by numerical

integration). Then with a desired error of less than 20%,

the pressure differential must be measured to within

6:5� 10�3 � 0:2 	10�3 Pa (10�8 atm). It is also of in-

terest to estimate the time constant for steady condi-

tions to be obtained [10], and is s 
 L2=D12 ¼ 12=0:713�
10�4 ¼ 1:4� 104 s (4 h). It is surely impossible to per-

form such an experiment.

Of course, if an experiment is impractical, there

cannot be any significance of these issues to the practical

venting problem, shown in Fig. 1b. We can now see that

the venting rate is controlled by the pressure differential,

rather than the diffusion rates given by Eqs. (9) and (15).

When venting to the atmosphere, the atmospheric

pressure will vary far more than pressure differentials

calculated here. The practical problem will be charac-

terized by essentially hydrodynamic flows of either he-

lium or air, depending on the difference in pressures, and

Eq. (18) can be used to estimate the venting (or inges-

tion) rates. Venting is not a diffusion problem.
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